Advertisement
২২ জানুয়ারি ২০২৫
chess

150 years old problem: রানির প্যাঁচের সমাধান! দাবা বোর্ডে দেড় শতাব্দী প্রাচীন ধাঁধার উত্তর দিলেন হার্ভার্ডের গণিতজ্ঞ

হার্ভার্ডের ‘সেন্টার অব ম্যাথেমেটিক্যাল সায়েন্সেস অ্যান্ড অ্যাপ্লিকেশন’-এর গণিতজ্ঞ মাইকেল সিমকিন প্রায় সঠিক একটি সমাধান নিয়ে হাজির হয়েছেন।

ফাইল ছবি।

সংবাদ সংস্থা
শেষ আপডেট: ০৪ ফেব্রুয়ারি ২০২২ ২০:৫৫
Share: Save:

১৫০ বছর ধরে নাকানিচোবানি খাওয়ানোর পর অবশেষে ধরা দিল সে। রানির প্যাঁচের সমাধা হল অঙ্কের খাতায়। কিন্তু সত্যিই হল কি? আপাত ভাবে মনে করা হচ্ছে, দাবার বোর্ডে দেড় শতাব্দী পুরনো ধাঁধার সমাধান এ বার বোধহয় হল।

সাধারণত দাবা খেলা শুরুর অন্যতম জনপ্রিয় পদ্ধতি হিসেবে পরিচিত ‘কুইনস গ্যাম্বিট’। এই পদ্ধতিতে সাদার রানির ঠিক সামনের বোড়ে (পন)-কে দু’ঘর (ডি-৪) এগিয়ে দেওয়া হয়। কালোও একই ভাবে তার রানির সামনের বোড়েকে দু’কদম (ডি-৫) এগিয়ে দেয়। দ্বিতীয় চালে সাদা গজ (বিশপ)-এর সামনের বোড়েকে দু’কদম (সি-৪) এগিয়ে দেয়। স্বভাবতই কালোর বোড়ে সি-৪-কে খেয়ে ফেলতে পারে। কিন্তু এতে দাবা বোর্ডের কেন্দ্র বা মধ্যবর্তী অংশ কালোর কাছে সম্পূর্ণ অরক্ষিত হয়ে পড়ে। ডি-৪, ডি-৫, সি-৪— এই পদ্ধতি দাবার ইতিহাসের অন্যতম প্রাচীন এবং জনপ্রিয়। যা দুনিয়ায় পরিচিত ‘কুইনস গ্যাম্বিট’ নামে।

একই নামে রয়েছে একটি উপন্যাসও। তা সম্প্রতি ‘ওয়েব সিরিজ’ হিসেবে ব্যাপক জনপ্রিয়তা কুড়িয়েছে।

প্রশ্ন ছিল, ৬৪ খোপের দাবার বোর্ডে ৮টি পরস্পর বিরোধী রানি (কুইন) একে অপরকে আক্রমণ না করেও কত ঘর এগোতে পারবে! ১৮৪৮-এ জার্মানির একটি দাবা সংক্রান্ত পত্রিকায় এই প্রশ্ন তোলা হয়। উত্তর মেলে দু’বছর পর। জানা যায়, মোট ৯২টি চাল এমন দেওয়া সম্ভব, যেখানে ৮টি রানির একটিও অপরকে আক্রমণ করবে না। ১৮৬৯-এ আবির্ভূত হল এই সমস্যারই আরও জটিলতম রূপ। সমস্যাটি হল, ধরে নেওয়া যাক, ১০০০ সারির একটি দাবার বোর্ডে প্রত্যেক সারিতে ১০০০ খোপ আছে এবং রানির সংখ্যাও ১ হাজার। তা হলে কতগুলো চাল দেওয়া যাবে, যেখানে একটি রানিও অপরকে আক্রমণ করবে না। ১ হাজারের জায়গায় দশ হাজার, বা ১০ লক্ষ হলেই বা কী হবে?

এ যাবৎ এই হেঁয়ালির সন্ধান মেলেনি। কিন্তু সম্প্রতি হার্ভার্ড বিশ্ববিদ্যালয়ের ‘সেন্টার অব ম্যাথেমেটিক্যাল সায়েন্সেস অ্যান্ড অ্যাপ্লিকেশন’-এর গণিতজ্ঞ মাইকেল সিমকিন ‘প্রায় সঠিক’ একটি সমাধান নিয়ে হাজির হয়েছেন।

তিনি বলছেন, একটি অসীম দাবা বোর্ডে (যেখানে ৬৪-এর বদলে খোপের সংখ্যা অসীম) প্রায় (০.১৪৩এন)^এন (এন অর্থাৎ রানির সংখ্যা) উপায় রয়েছে, যেখানে কোনও রানিই একে অপরকে আক্রমণ করবে না। এই সূত্রেই খোপ এবং রানির সংখ্যা পর্যায়ক্রমিক ভাবে বাড়লেও সমাধান সম্ভব। সিমকিনের এই ধাঁধা সমাধান করতে সময় লেগেছে প্রায় পাঁচ বছর।

অন্য বিষয়গুলি:

chess The Queens Gambit Harvard University Mathematician
সবচেয়ে আগে সব খবর, ঠিক খবর, প্রতি মুহূর্তে। ফলো করুন আমাদের মাধ্যমগুলি:
Advertisement

Share this article

CLOSE

Log In / Create Account

We will send you a One Time Password on this mobile number or email id

Or Continue with

By proceeding you agree with our Terms of service & Privacy Policy