এককোষী ব্যাকটিরিয়া বা বহুকোষী মানুষ, যে কোনও প্রাণীর কোষকে বেঁচে থাকতে গেলে যে জৈব প্রক্রিয়াগুলো ক্রমাগত করে যেতে হয়, তার প্রায় সবগুলোই সম্পন্ন করে এক বিশেষ ধরনের জৈব অণু। প্রোটিন অণু।
প্রোটিন তৈরি হয় অনেকগুলো অ্যামিনো অ্যাসিড অণু (এএ) পর পর জুড়ে। অনেকটা মালা গাঁথার মতো। সাধারণত মোট কুড়ি রকমের এএ ব্যবহার করে একটা প্রোটিন তৈরি হয়। প্রোটিনের প্রাথমিক গঠন বলতে বোঝায়, কোন এএ-র পর কোন এএ জুড়ে সেটা তৈরি। এই প্রাথমিক গঠন নির্ধারণ করে সেই প্রোটিনের চরিত্র। প্রোটিনটার কার্যকলাপ নির্ধারণ করে ত্রিমাত্রিক গঠন।
এখানে চরিত্র ও কার্যকলাপ বলতে বোঝানো হচ্ছে, সেই প্রোটিন দ্বারা সংঘটিত জৈব ক্রিয়াকলাপ। যেমন, হিমোগ্লোবিন মোট চারটে গ্লোবিন অণু দিয়ে তৈরি। পর পর এএ জুড়ে তৈরি এই অণুগুলো লম্বা সুতোর মতো দেখতে। প্রথমে গ্লোবিন সুতোগুলো উলের বলের মতো পেঁচিয়ে পেঁচিয়ে একটা কুণ্ডলী পাকায়। তার পর সেই কুণ্ডলীতে যোগ দেয় অক্সিজেন ধরার ছাঁকনি হিম অণু। গ্লোবিনগুলো কুণ্ডলী পাকিয়ে নির্দিষ্ট এক ত্রিমাত্রিক আকার ধারণ করে। হিমোগ্লোবিন অণুর এই অনন্য ত্রিমাত্রিক গঠনই তার অক্সিজেন ও কার্বন ডাই-অক্সাইড অণু বহন করার চরিত্র নির্ধারণ করে, কোনও কারণে যা বদলে গেলে ভয়ঙ্কর বিপদ।
তাই অজানা ও নতুন কোনও প্রোটিন নিয়ে কাজ করার সময় বিজ্ঞানীদের প্রথম কাজ হল, সেই প্রোটিনের ত্রিমাত্রিক গঠন বার করা। পরীক্ষাগারে সেই প্রোটিনকে বিশুদ্ধ করার পর তার ত্রিমাত্রিক গঠন বার করা হয় মূলত তিন রকম পদ্ধতি ব্যবহার করে— এক্স-রে ক্রিস্টালোগ্রাফি, এনএমআর বা নিউক্লিয়ার ম্যাগনেটিক রেজ়োন্যান্স এবং ক্রায়োইলেকট্রন মাইক্রোস্কোপি। সব ক’টা পদ্ধতিই সময় ও ব্যয়সাপেক্ষ। শুধু তা-ই নয়, পরীক্ষাগারে অনেক প্রোটিনকেই বিশুদ্ধরূপে তৈরি করা দুষ্কর। তা ছাড়া, বিভিন্ন প্রাণীর গোটা জিনোমের অক্ষরমালা আবিষ্কার হওয়ার পর যে হারে নতুন নতুন প্রোটিনের আভাস পাওয়া যাচ্ছে, সেই হারে পরীক্ষাগারে তাদের ত্রিমাত্রিক গঠন বার করা এক কথায় অসম্ভব।
প্রোটিন ভাঁজের চরিত্র অনুমান করার খেলা আয়োজন করেছিলেন জন মোল্ট (বাঁ দিকে) ও ক্রিস্তফ ফিদেলিস।
তা হলে? প্রোটিনের সবচেয়ে সম্ভাব্য ত্রিমাত্রিক গঠন কী হতে পারে, তা নির্ণয় করে তার ‘ফ্রি এনার্জি’। এটা একটা বিশেষ সূচক। ভৌত রসায়নের সূত্র ব্যবহার করে কোনও নির্দিষ্ট ত্রিমাত্রিক গঠনের জন্য এর মান নির্ধারণ করা সম্ভব, এবং সবচেয়ে সম্ভাব্য ত্রিমাত্রিক গঠনের জন্য এর মান সর্বনিম্ন। অর্থাৎ, শক্তিশালী কম্পিউটার ব্যবহার করে যদি কোনও প্রোটিনের সম্ভাব্য সব ক’টা ত্রিমাত্রিক গঠনের ফ্রি-এনার্জি বার করা যায়, তা হলে সবচেয়ে কম ফ্রি-এনার্জিওয়ালা ত্রিমাত্রিক গঠনটাই তো প্রকৃত ত্রিমাত্রিক গঠন।
কিন্তু এটা বাস্তবে করা যে অসম্ভব, তা ১৯৭২ সালে দেখিয়েছিলেন নোবেলজয়ী বিজ্ঞানী সাইরাস লেভিন্থাল। কোনও কম্পিউটার যদি এক সেকেন্ডে এই প্রোটিনের এক কোটি সম্ভাব্য ত্রিমাত্রিক গঠন তৈরি করে তাদের প্রত্যেকের ফ্রি-এনার্জি নির্ণয় করতে পারে, তা হলে সব ক’টা সম্ভাব্য ত্রিমাত্রিক গঠন পরীক্ষা করতে তার যা সময় লাগবে, তা আমাদের ব্রহ্মাণ্ডের বর্তমান বয়সের থেকেও বেশি। অর্থাৎ, প্রোটিন ভাঁজের ক্ষেত্রে সোজা আঙুলে ঘি উঠবে না। কিন্তু বিজ্ঞানীরা অত সহজে হার মানেন না। যখন হাতে-কলমে পরীক্ষা করে কোনও জিনিস পাওয়া অসম্ভব হয়ে ওঠে, তখন তা অনুমান করা শুরু হয়।
প্রাণের বিবর্তনের সঙ্গে প্রাণীর দেহে থাকা প্রোটিনেরও বিবর্তন হয়েছে। তাই নতুন কোনও প্রোটিন হাতে পেলেই বিজ্ঞানীরা প্রথমে জানতে চান যে, ওই অজানা প্রোটিনটার প্রাথমিক গঠন ও অন্য কোনও জানা প্রোটিনের প্রাথমিক গঠন কি প্রায় এক রকম? উত্তর হ্যাঁ হলে ধরে নেওয়া হয় যে, সেই অজানা ও জানা প্রোটিন দুটো নিশ্চয়ই জ্ঞাতি। অর্থাৎ, বিবর্তনের শাখা-প্রশাখা ধরে যদি একটু অতীতে যাওয়া যায়, তা হলে দেখা যাবে যে, তারা দু’জনেই কোনও এক প্রাচীন প্রোটিনের বংশধর। তখন ধরে নেওয়া হয় যে, তাদের প্রাথমিক গঠন দুটো অবিকল এক না হলেও, তাদের ত্রিমাত্রিক গঠন ও জৈব ক্রিয়াগুলো প্রায় এক। এই ভাবে ওই অজানা প্রোটিনটার ত্রিমাত্রিক গঠন অনুমান করা হয়।
কিন্তু অজানা প্রোটিনটার প্রাথমিক গঠন যদি একদম নতুন হয়? তা হলে তার ত্রিমাত্রিক গঠন অনুমান করা বেশ কঠিন হয়ে পড়ে। কিন্তু তারও নানা উপায় আছে। যেমন— থ্রেডিং ও বেশ কয়েক রকমের বিবর্তনবাদ বহির্ভূত পদ্ধতি, যেমন ডেভিড বেকার ও সহকর্মীদের তৈরি রোসেত্তা।
১৯৯৪ সালে আমেরিকার দুই অধ্যাপক, জন মোল্ট ও ক্রিস্তফ ফিদেলিস, এক অভিনব প্রতিযোগিতার আয়োজন করেন। সঠিক ভাবে প্রোটিন ভাঁজ করার এই প্রতিযোগিতার নাম ক্যাস্প। অংশগ্রহণকারীদের প্রায় ১০০টা প্রোটিনের ত্রিমাত্রিক গঠন অনুমান করতে বলা হয়। প্রতিযোগীদের অনুমান করা ত্রিমাত্রিক গঠনগুলো সত্যি কি না, তা জানার জন্য আর এক দল বিজ্ঞানী পরীক্ষাগারে ওই প্রোটিনগুলোর ত্রিমাত্রিক গঠন হাতে-কলমে নির্ধারণ করা শুরু করেন। মিটিং-এর দিন প্রতিযোগীরা এক-এক করে তাঁদের অনুমান করা ত্রিমাত্রিক গঠনগুলো প্রকাশ্যে আনেন। তার পর সেই প্রোটিনের আসল ত্রিমাত্রিক গঠন প্রকাশ করা হয়। কোন দল কত ভাল ফল করল, তা মাপার জন্য গ্লোবাল ডিসট্যান্স টেস্ট বা জিডিটি সূচক ব্যবহার করা হয়। সর্বোচ্চ স্কোর ১০০। ২০১৬ সাল অবধি সবচেয়ে সফল অনুমান-পদ্ধতির জিডিটি ছিল ৪০-এর মধ্যে। ২০১৮-তে তা বেড়ে হয় ৬০। আর এই বছরে, তা সবাইকে চমকে ৯০ ছুঁই ছুঁই। এই স্কোর করেছে ২০১৮ সালে প্রতিযোগিতায় যোগদান করা এক নতুন প্রতিদ্বন্দ্বী। কৃত্রিম বুদ্ধিমত্তা বিষয়ে কাজ করা ডিপ মাইন্ড প্রতিষ্ঠানের এক দল বিজ্ঞানী ও তাঁদের অ্যালগরিদম ‘আলফা ফোল্ড’।
কৃত্রিম বুদ্ধিমত্তা বা আর্টিফিশিয়াল ইন্টেলিজেন্স (এআই) বলতে ঠিক কী বোঝায়? বুদ্ধি হল এমন কিছু, যা মানুষের আছে, কিন্তু যন্ত্রের নেই। একটা কম্পিউটার খুব কম সময়ে প্রচুর পরিমাণ যোগ-বিয়োগ-গুণ-ভাগ করতে পারে। তার মনে রাখার ক্ষমতাও অপরিসীম। তবে সে মনে রাখতে পারে ঠিক যেমনটি শেখানো হয়েছিল। একটুও এ দিক-ও দিক নয়। এখানেই সে মানুষের কাছে হেরে যায়। যা সে আগে দেখেনি, সেটা সে কখনও অনুমান করতে পারবে না।
আমরা কিন্তু পারি। ছোটবেলায় অক্ষরমালা শেখানোর সময় আমরা ছাপা অক্ষর দেখি। পরবর্তী কালে আমাদের কিন্তু অচেনা হাতের লেখা পড়তে অসুবিধে হয় না। ছাপা অক্ষরের সঙ্গে খুব স্পষ্ট মিল না থাকলেও আমরা প্যাটার্ন অনুমান করি। এই অনুমান করার ক্ষমতাই বিজ্ঞানের ভাষায় ‘বুদ্ধি’। কম্পিউটার মুখস্থ-মাস্টার। নিজস্ব অনুমান ক্ষমতা বা বুদ্ধি নেই।
না-দেখা জিনিস অনুমান করার পদ্ধতিও শেখানো যায়। মুখস্থ-মাস্টার কম্পিউটারকে অনুমান করতে শেখানোর জন্য নানা রকম অ্যালগরিদম আছে, যার মধ্যে মুখ্য হল আর্টিফিশিয়াল নিউরাল নেটওয়ার্ক বা এএনএন। ডিপ লার্নিং নামের এক বিশেষ এএনএন দিয়ে তৈরি আলফা ফোল্ডকে প্রায় দেড় লক্ষ প্রোটিনের প্রাথমিক গঠন ও তাদের প্রকৃত ত্রিমাত্রিক গঠন বার বার দেখিয়ে শেখানো হয়েছে, কী করে শুধুমাত্র প্রাথমিক গঠন দেখেই কোনও অজানা প্রোটিনের ত্রিমাত্রিক গঠন অনুমান করা যায়। অবিশ্বাস্য সাফল্য দেখিয়েছে এএনএ। বিজ্ঞানী মহল এই অপ্রত্যাশিত সাফল্যকে এক নতুন যুগের সূচনা বলে মনে করছে। অদূর ভবিষ্যতে আলফা ফোল্ডের এই সাফল্য হয়তো নতুন ওষুধ আবিষ্কারের পথ সুগম করবে
কিন্তু একটা প্রশ্ন রয়েই গেল। অনেক প্রোটিনেরই একটা বিশেষ ত্রিমাত্রিক গঠন হয় না। বরং তারা নানা ত্রিমাত্রিক গঠনের মধ্যে ঘোরাফেরা করে। প্রাথমিক গঠন থেকে তাদের চরিত্র জানব কী করে? সেখানেও কৃত্রিম বুদ্ধিমত্তা কি পথ দেখাবে?
বিজ্ঞানী, বসু বিজ্ঞান মন্দির